- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Huang, Tianshu (2)
-
Ramesh, Arjun (2)
-
Rowe, Anthony (2)
-
Riar, Jaspreet (1)
-
Titzer, Ben L (1)
-
Titzer, Ben_L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wasm is gaining popularity outside the Web as a well-specifed low-level binary format with ISA portability, low memory footprint and polyglot targetability, enabling efficient in- process sandboxing of untrusted code. Despite these advantages, Wasm adoption for new domains is often hindered by the lack of many standard system interfaces which precludes reusability of existing software and slows ecosystem growth. This paper proposes thin kernel interfaces for Wasm, which directly expose OS userspace syscalls without breaking intra- process sandboxing, enabling a new class of virtualization with Wasm as a universal binary format. By virtualizing the bottom layer of userspace, kernel interfaces enable effortless application ISA portability, compiler backend reusability, and armor programs with Wasm’s built-in control flow integrity and arbitrary code execution protection. Furthermore, existing capability-based APIs for Wasm, such as WASI, can be implemented as a Wasm module over kernel interfaces, improving reuse, robustness, and portability through better layering. We present an implementation of this concept for two kernels – Linux and Zephyr – by extending a modern Wasm engine and evaluate our system’s performance on a number of sophisticated applications which can run for the first time on Wasm.more » « lessFree, publicly-accessible full text available March 30, 2026
-
Ramesh, Arjun; Huang, Tianshu; Riar, Jaspreet; Titzer, Ben_L; Rowe, Anthony (, Proceedings of the ACM on Programming Languages)Heisenbugs, notorious for their ability to change behavior and elude reproducibility under observation, are among the toughest challenges in debugging programs. They often evade static detection tools, making them especially prevalent in cyber-physical edge systems characterized by complex dynamics and unpredictable interactions with physical environments. Although dynamic detection tools work much better, most still struggle to meet low enough jitter and overhead performance requirements, impeding their adoption. More importantly however, dynamic tools currently lack metrics to determine an observed bug's difficulty or heisen-ness undermining their ability to make any claims regarding their effectiveness against heisenbugs. This paper proposes a methodology for detecting and identifying heisenbugs with low overheads at scale, actualized through the lens of dynamic data-race detection. In particular, we establish the critical impact of execution diversity across both instrumentation density and hardware platforms for detecting heisenbugs; the benefits of which outweigh any reduction in efficiency from limited instrumentation or weaker devices. We develop an experimental WebAssembly-backed dynamic data-race detection framework, Beanstalk, which exploits this diversity to show superior bug detection capability compared to any homogeneous instrumentation strategy on a fixed compute budget. Beanstalk's approach also gains power with scale, making it suitable for low-overhead deployments across numerous compute nodes. Finally, based on a rigorous statistical treatment of bugs observed by Beanstalk, we propose a novel metric, the heisen factor, that similar detectors can utilize to categorize heisenbugs and measure effectiveness. We reflect on our analysis of Beanstalk to provide insight on effective debugging strategies for both in-house and in deployment settings.more » « less
An official website of the United States government
